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Abstract
Governments worldwide are increasingly turning to participatory budgeting (PB) as a tool for democratically al-

locating limited budgets to public-good projects. In PB, constituents vote on their preferred projects from a provided
list via specially-designed ballots, and then an aggregation rule selects a set of projects whose total cost fits within
the budget. Recent work studies how to design PB ballot formats and aggregation rules that yield outcomes with low
distortion (informally, those with high social welfare). Existing bounds, however, rely on strong assumptions that
restrict voters’ latent utilities. We prove that low distortion PB outcomes can be achieved without any assumptions
on voters’ utilities by leveraging the established idea that voters can be public-spirited: they may consider others’
interests alongside their own when when voting. Our results demonstrate that, within this model of voter behavior,
several common ballot formats permit low distortion, often even outperforming existing bounds achieved under re-
stricted utilities. These findings highlight the potential of democratic deliberation — a practice believed to cultivate
public spirit, and which is commonplace in real-world PB — to enable higher-welfare outcomes in PB elections.

1 Introduction
Governments at all scales regularly face the question: With a limited budget, which public-good projects — e.g., build-
ing bike paths or installing streetlamps — should they fund? To make such decisions democratically, governments are
increasingly using participatory budgeting (PB), in which constituents vote on which projects they would like to see
funded. In PB, the government supplies a budgetB and a list ofm potential projects a ∈ {1, . . . ,m} with correspond-
ing costs c1, . . . , cm. Voters then submit their preferences, which are used to select a set of projects with total cost at
most B to be funded. PB is now used all over the world — even at the national level — to decide allocations of public
funds [De Vries et al., 2022; Participedia, 2023; Wampler et al., 2021].

Given the growing deployment of PB, it is key to understand how much the budget allocations produced actually
benefit society. As have many others (e.g., Benadè et al. [2021]), we formalize the “societal benefit” of an allocation
by its utilitarian social welfare: the total utility it gives to all voters combined. In using this measurement, we adopt
the standard model of latent additive utilities: each voter i has utility ui(a) ∈ R>0 for each project a, and their
total utility for a set of projects S being funded is ui(S) =

∑
a∈S ui(a). Then, the social welfare of S is equal to

sw(S) =
∑
i∈N ui(S).

If voters’ utilities were observable, choosing the maximum-welfare allocation would amount to solving the knap-
sack problem. However, in practice voters’ preferences can only be elicited more coarsely through ballots. Benadè
et al. [2021] study four ballot formats for PB: rankings by value, where each voter i ranks the alternatives in a non-
increasing order of ui(a); rankings by value-for-money, where i ranks the alternatives in a non-increasing order of
ui(a)/ca; knapsack votes, where i specifies her favorite budget-feasible set of projects argmaxS:∑a∈S ca6B

ui(S); and
threshold approval votes, where the government specifies a threshold τ and i approves every project a with ui(a) > τ .

An aggregation rule takes the n ballots as input to find a budget-feasible set of projects. The quality of this outcome
is measured by the distortion: the worst-case (over possible latent utilities) ratio of the best possible social welfare that
of the outcome. By taking the worst case over inputs, we can measure the overall efficiency of a combination of
ballot format and aggregation rule. Ideally, we would like to design ballot formats and aggregation rules that lead to
low-distortion PB outcomes.
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Ballot Format Upper bounds Lower bounds

Deterministic aggregation rules

Rankings by value mγ−1min ·min{m, γ−1min} (Thm. 2) (m− 1)γ−1min (Thm. 1)
Rankings by value/money ∞ (Thm. 5)
Knapsack m+m3γ−2min (Thm. 7) m(γ−1min − 1) (Thm. 8)
Threshold approvals m2γ−1min (Thm. 10) m− 1 (Thm. 11)

Randomized aggregation rules

Rankings by value log(m)γ−1min (Thm. 3) log(m) (Thm. 4)
Rankings by value/money log(m)γ−1min (Thm. 6)
Knapsack m (Rem. 2) m− γmin(m− 1) (Thm. 9)

Table 1: Asymptotic (in m, γmin) distortion bounds across ballot formats. Bounds are sometimes coarsened slightly for
simplicity. We exclude randomized threshold approvals, as we consider two separate sources of randomness.

Unfortunately, we immediately encounter a stark impossibility: using any of the ballot formats listed above, any
deterministic aggregation rule has unbounded distortion. If randomized aggregation rules are allowed, we can achieve
distortion at mostm by simply ignoring the ballots and funding a single project chosen uniformly at random; however,
this is crude and unsatisfying, and we would like to do better when randomization is allowed.

Existing work sidesteps this impossibility by assuming that each voter’s utilities are restricted to add up to 1 [Be-
nadè et al., 2021]. Although this permits bounded distortion in theory, it remains unclear whether these bounds apply
in practice: For example, this assumption may not hold in the likely case that the public goods will more greatly impact
lower-income constituents.

In this paper, our goal is to design ballot formats and aggregation rules that lead to low-distortion PB outcomes,
regardless of voters’ underlying utilities. Recent work by Flanigan et al. [2023] offers a promising approach: under
unrestricted utilities, they achieve low distortion in single-winner elections by leveraging the established idea that
voters may be public-spirited: when casting their ballots, voters consider others’ interests in addition to their own. As
they point out, research suggests that public spirit can be cultivated via democratic deliberation — a practice that is
already commonplace in PB elections [De Vries et al., 2022; Participedia, 2023]. The possibility that PB voters may
already be public-spirited motivates our main research question:

Question: If voters are public-spirited, for which popular PB ballot formats — if any — do there exist
aggregation rules with small distortion?

An affirmative answer to this question would suggest a practicable approach — democratic deliberation — to achieving
higher-welfare outcomes in PB elections.

Results and contributions. We study distortion under the four PB ballot formats mentioned above. Following Flani-
gan et al. [2023], we depart from the standard model of how each voter i translates her utilities into a ballot: instead
of evaluating each project a by just her own utility ui(a), she evaluates a according to her public-spirited (PS) value,
given by the convex combination of her utility for a and its social welfare. This convex combination is weighted by
her public spirit level γi ∈ [0, 1], where higher γi means she more strongly weighs the social welfare.

Within this model, we prove upper and lower bounds describing what distortion is fundamentally achievable when
using the best (deterministic and randomized) aggregation rules for each ballot format. This allows us to compare the
ballot formats themselves. Our bounds, summarized in Table 1, are parameterized by γmin = mini γi, the minimum
public spirit level of any voter. These bounds reflect the following contributions:

Contribution 1. First, we find that public spirit can dramatically improve the distortion for multiple popular ballot for-
mats. Using certain ballot designs, the distortion of some deterministic rules drops from unbounded to at most m, with
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only mild dependencies on γmin. For randomized rules, certain ballot formats permit distortion of at most log(m).
This suggests that the use of deliberation, provided it truly promotes public spirit, can lead to dramatic improvements
in the welfare of PB outcomes. Despite requiring no assumptions on the utilities, our bounds often even outperform
bounds under the unit-sum utilities assumption, which we provide for comparison throughout the paper. The most
significant such improvement occurs for knapsack ballots with deterministic rules, where the distortion drops from
exponential in m to order m3.

Contribution 2. Toward our original goal of identifying the ballot format permitting the lowest distortion, we find
that when voters are public-spirited, rankings-by-value permits the best possible distortion using either randomized
and deterministic aggregation rules, for all but very small values of γmin. This is convenient, as it is the simplest ballot
format for voters to complete.

Contribution 3. Finally, our technical analysis introduces entails multiple ideas of independent interest. First, we
show how to transform deterministic and randomized single-winner rule into corresponding PB rules while incurring
only an additional factor of O(m) and O(log(m)), respectively (Lemma 2 and Lemmas 3 and 4). Our analysis of
knapsack ballots also includes a novel approach of comparing entire subsets of alternatives. Finally, in analyzing PB
we derive new bounds for two restricted settings: single-winner voting (Proposition 4, Lemma 5) and k-committee
selection (Lemma 4, Lemma 6, Theorem 14).

1.1 Related work
Our work directly builds on the works of Benadè et al. [2021], who analyzed distortion in PB, and Flanigan et al.
[2023], who introduced the public-spirit model. Our results eliminate the unit-sum assumption made in the former
work, and generalize the latter work from single-winner elections (selecting a single alternative) to the more general
problem of PB, where multiple alternatives are selected subject to a budget constraint and there are multiple reasonable
ballot formats to consider.

Procaccia and Rosenschein [2006] introduce the distortion framework in single-winner elections under the unit-
sum assumption. We now know that the best distortions achievable by deterministic and randomized rules for this
special case are Θ(m2)[Caragiannis and Procaccia, 2011; Caragiannis et al., 2017] and Θ(

√
m) [Boutilier et al.,

2015; Ebadian et al., 2022], respectively. Optimal distortion bounds have also been identified for k-committee selec-
tion [Borodin et al., 2022; Caragiannis et al., 2017], which still remains a special case of PB. As an alternative to the
unit-sum assumption, unit-range utilities or metric costs have been studied [Anshelevich et al., 2018; Filos-Ratsikas
and Miltersen, 2014], but all of these place some restriction on voter preferences. For further details, we suggest the
survey of Anshelevich et al. [2021].

Multiple approaches other than distortion have been studied for PB. The axiomatic approach has been used to
identify aggregation rules satisfying desirable axioms such as various monotonicity properties Baumeister et al. [2020];
Rey et al. [2020]; Talmon and Faliszewski [2019]. Another important consideration in PB is whether the allocation
of funds is fair with respect to (groups of) voters [Brill et al., 2023; Fain et al., 2018; Peters et al., 2021]. For further
details, we suggest the survey of Rey and Maly [2023] and the book chapter of Aziz and Shah [2021].

2 Preliminaries
In participatory budgeting (PB), there is a set N of n voters and a set A of m alternatives (projects). We denote
voters by i, j and alternatives by a, b. There is a total budget of B, which is normalized to 1, and a cost function
c : A → [0, 1], where c(a) is the cost of a. Slightly abusing notation, we use c(S) =

∑
a∈S ca as the total cost of

alternatives in S. Let F = {S ⊆ A : c(S) 6 B} be all budget-feasible sets of alternatives. The goal of PB is to select
a such a budget-feasible set by eliciting and aggregating voter preferences.

We note that k-committee selection is a special case of PB, where the cost of each alternative is 1/k, so F consists
of all sets of k alternatives. We use “k-committee rule” to refer to an aggregation rule for this special case. Further,
single-winner selection is a special case of k-committee selection where k = 1; we use “single-winner rule” to refer
to an aggregation rule designed for this special case.
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Utilities. Each voter i ∈ N has a utility for each alternative a ∈ A denoted by ui(a) ∈ R>0. Together, these util-
ities form a utility matrix U ∈ Rn×m>0 . Define the social welfare of an alternative a ∈ A w.r.t. utility matrix U as
sw(a, U) =

∑
i∈N ui(a); for a subset of alternatives S ⊆ A, define sw(S,U) =

∑
a∈S sw(a, U). We use sw(a) or

sw(S) when U is clear from context.

PS-values. Following the model introduced by Flanigan et al. [2023], we assume that each voter i ∈ N has a public
spirit (PS) level γi ∈ [0, 1] and together these PS-levels form the PS-vector ~γ ∈ [0, 1]n. Our results will depend on the
minimum public spirit level of the voters, denoted by γmin = mini∈N γi.

Each voter submits her preferences according to not her personal utilities, but her PS-values, which she computes
by taking a γi-weighted convex combination of her personal utilities and the average utility of all voters. Formally, i’s
PS-value for a is given by

vi(a) = (1− γi) · ui(a) + γi · sw(a)/n.

Together, these PS-values form the PS-value matrix V~γ,U ∈ Rn×m>0 . PS-values are additive across alternatives, so that
for each S ⊆ A, vi(S) =

∑
a∈S vi(a).

Note that PS-values have the same scale as utilities as sw(a) =
∑
i∈N ui(a) =

∑
i∈N vi(a) for each a ∈ A. We

show that this transformation allows us to get rid of the unit-sum assumption (
∑
i∈N ui(a) = 1,∀a ∈ A) required by

much of prior work [Benadè et al., 2021].

Elicitation. Since it is cognitively burdensome for voters to report numeric PS-values, it is common to elicit their
preferences using discrete ballots. Following the model of Benadè et al. [2021], a ballot format X : Rm>0×[0, 1]m → LX

turns every PS-value function into a “vote” from a (usually finite) set LX, sometimes using the cost function over the
alternatives. Under this ballot format, each voter i submits the vote ρi = X(vi); together, these votes form the input
profile ~ρ = {ρ1, . . . , ρn}. We use V~γ,U BX ~ρ to indicate that PS-value matrix V~γ,U induces input profile ~ρ under ballot
format X. Alternatively, we say that ~ρ is consistent with V~γ,U . We omit X when it is clear from the context.

Following Benadè et al. [2021], we study four ballot formats — Rankings by Value, Rankings by value for money,
Knapsack Votes, and Threshold Approval Votes — which we formally define in their respective sections.

Aggregation Rules. Let ∆(F) be the set of all distributions over F . A (randomized) aggregation rule f : LnX ×
[0, 1]m → ∆(F) for ballot format X takes an input profile ~ρ ∈ LnX and a cost function over alternatives c ∈ [0, 1]m

as input, and outputs a distribution over feasible sets of alternatives in F . We say that f is deterministic if its output
always has singleton support.

Distortion. The distortion measures of the efficiency of a voting system, composed of a ballot format and an aggre-
gation rule for that ballot format. For a ballot format X and minimum public spirit level γmin ∈ [0, 1], the distortion of
rule f on input profile ~ρ in format X and cost function c is the following worst-case ratio:

distX(f, ~ρ, c) = sup
U,~γ :

mini∈N γi=γmin,
V~γ,UB~ρ

maxS∈F sw(S,U)

ES′∼f(~ρ)sw(S′, U)
.

Further, the (overall) distortion of f is obtained by taking the worst case over all instances (~ρ, c) and all n:

distX(f) = sup
n>1

sup
~ρ∈LnX ,
c∈[0,1]m

distX(f, ~ρ, c).

The resulting distortion is a function of m and γmin; we fix arbitrary m > 2 and γmin ∈ (0, 1] throughout the paper.
We then consider the lowest distortion enabled by each ballot format, across all voting rules taking in ballots of that
format. This is roughly a measure of the usefulness of the information contained in the ballot format for social welfare
maximization.

Supporting results. Before presenting our main results, we state a lemma we will use throughout the paper. This is a
generalization of Lemma 3.1 due to Flanigan et al. [2023]; the proof is in Appendix A.1.

Lemma 1. Let A1, A2 ⊆ A be two arbitrary sets of alternatives. For any fixed constant α > 0, let NA1�A2 = {i ∈
N : αvi(A1) > vi(A2)}. Then:

sw(A2)

sw(A1)
6 α

(
1− γmin

γmin

n

|NA1�A2 |
+ 1

)
.
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Finally, for comparison, we remark that for all ballot formats we consider, when there is no public spirit and the
utilities are unrestricted, all deterministic voting rules have unbounded distortion and and randomized rules have at
best m distortion (Appendix A.2).

3 Rankings by Value
In the ballot format rankings by value (rbv), each voter ranks the alternatives in a non-increasing order of her values
for them. Formally, Lrbv is the set of all rankings of the alternatives, and each voter i submits a ranking ρi ∈ Lrbv such
that for every a, b ∈ A with vi(a) > vi(b), we have a �ρi b (i.e., a appears above b in the ranking ρi); the voter can
break ties among equal-PS-valued alternatives arbitrarily. Note that rbv is the canonical ballot format in single-winner
and k-committee selection — both special cases of PB — so rules for these cases will be assumed to use rankings by
value unless stated otherwise.

3.1 Deterministic Rules
First, we show that for rbv ballots, deterministic rules must incur a distortion at least (m− 1)γ−1min:

Theorem 1 (lower bound). For rankings by value, every deterministic rule f has distortion

distrbv(f) > (m− 1)γ−1min.

The intuition for this bound is as follows: first, observe that even when γi = 1 for all i (i.e., when all voters rank
alternatives by social welfare alone), any deterministic rule must still incur Ω(m) distortion. This is because rankings
are insufficiently informative, even when voters agree, to recover the optimal budget-feasible set. When γmin < 1 and
voters can disagree, the lower bound gets worse. The full proof is in Appendix B.1.

Next, we prove an upper bound that matches our lower bound with respect to m by applying single-winner voting
rules with low distortion under public spirit. To enable this approach, we first prove a general result: when used in the
PB context, any single-winner rule will incur up to an additional factor of m distortion.

Lemma 2. For any d > 1, any deterministic rule f with distortion d in the single-winner case has distortion
distrbv(f) 6 m · d in participatory budgeting.

Proof. Fix any instance and let f return the singleton set {a}. Let A∗ be an optimal budget-feasible set. Then,

sw(A∗)/sw(a) =
∑
a∗∈A∗

sw(a∗)/sw(a)

6 m · max
a∗∈A∗

sw(a∗) / sw(a) 6 m · d.

We now use this lemma to translate known results from the single-winner setting to PB. In single winner elections,
Flanigan et al. [2023] show that Plurality has distortion at most m(γ−1min − 1) + 1 and Copeland’s rule has distortion at
most

(
2γ−1min − 1

)2
. Plugging these bounds into Lemma 2, we conclude upper bounds for the PB setting:

Theorem 2 (upper bound). For rankings by value,

distrbv(plurality) 6 m2(γ−1min − 1) +m, and

distrbv(copeland) 6 m
(
2γ−1min − 1

)2
.

Remark 1. Note that there remains a gap between our upper and lower bounds (in Theorem 2 and (Theorem 1,
respectively): Plurality achieves the optimal dependence on γmin, Copeland achieves the optimal dependence on m,
but neither achieves both. This gap parallels the gap present in the single-winner case [Flanigan et al., 2023]. If a
single-winner rule with distortion O(γ−1min) were identified, plugging that into Lemma 2 would close the gap in our
bounds for PB as well. We leave this for future work.

5



3.2 Randomized Rules
Theorem 3 (upper bound). For rankings by value, there exists a randomized rule f with distortion

distrbv(f) 6 4(dlog2(m)e+ 1)
(
2γ−1min − 1

)
.

To prove this bound, we will derive another general-purpose reduction — this time for randomized rules — from PB
to k-committee selection (Lemma 3), and then from k-committee selection to single-winner selection (Lemma 4).
The first will suffers O(logm) overhead; the latter suffers none (asymptotically). To apply this reduction, we want to
plug in bounds on randomized single-winner rules; unfortunately, no such results exist in the public spirit model. In
response, we give a novel randomized single-winner rule with asymptotically optimal (in both m and γmin) distortion
of at most 4γ−1min − 2 (Lemma 5). We now state and prove these results in succession, before applying them to prove
Theorem 3.

Lemma 3. Fix any d > 1. If there exists a randomized k-committee selection rule fm′,k with distortion at most d for
each m′ 6 m and k ∈ [m′], then there exists a randomized participatory budgeting rule f for rankings by value with
distortion at most 2d · (dlog2(m)e+ 1).

Proof. Fix any PB instance. Split the alternatives into buckets A0, A1, . . . , Adlog2(m)e, where for i 6= 0,

Ai =
{
a ∈ A : 2i−1/m < ca 6 2i/m

}
, and

A0 = {a ∈ A : ca 6 1/m}.

The randomized PB rule f is as follows:

1. Sample j ∈ {0, 1, . . . , dlog2(m)e} uniformly.

2. Consider the restricted instance with only the alternatives inAj . That is, withm′ = |Aj | and k = min(m′,
⌊
m
2j

⌋
),

use the k-committee selection rule fm′,k to pick a set of k alternatives and return it.

Let A∗ be the optimal budget-feasible subset of the alternatives, L∗j be the optimal
⌊
m
2j

⌋
-committee of Aj , and Lj

be the one selected by the k-committee rule. For j 6= 0, A∗ ∩ Aj is of size at most m
2j−1 . That means sw(A∗ ∩ Aj) 6

2sw(L∗j ) for any j 6= 0.
In addition, for j = 0, L∗0 = A0 which implies sw(A∗ ∩ Aj) 6 sw(L∗j ). Since the k-committee selection rule

has distortion of d for any j, we have sw(L∗j ) 6 dsw(Lj), implying that sw(A∗ ∩ Aj) 6 2dsw(Lj). Letting δ be the
distribution of the mechanism output, we deduce the desired bound:

EL∼δ[sw(L)] =
1

dlog2(m)e+ 1

dlog2(m)e∑
j=0

sw(Lj)

>
1

dlog2(m)e+ 1

dlog2(m)e∑
j=0

sw(A∗ ∩Aj)
2d

>
sw(A∗)

2d(dlog2(m)e+ 1)
.

Next, we reduce k-committee selection to single-winner selection without any asymptotic overhead. The idea is
to simply add an alternative to the committee using the single-winner randomized rule, then remove the selected
alternative, and repeat the procedure k times.

Lemma 4. Fix any k ∈ [m], and d > 1. If there exists a randomized single-winner rule with distortion at most d for
each m′ 6 m, then there exists a randomized k-committee selection rule with distortion at most d.

We defer the full proof to Appendix B.2. The main idea is to repeatedly pick alternatives using the rule k times.
Having reduced the PB problem to that of single-winner selection, we now present a novel randomized single-

winner rule with the following distortion. The proof is located in Appendix B.3.
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Lemma 5. There exists a randomized single-winner voting rule with distortion at most 4γ−1min − 2.

Proof of Theorem 3. Finally, we apply Lemmas 3, 4 and 5 to prove Theorem 3. By Lemma 5, there exists a randomized
single-winner rule (for any m) that achieves distortion at most 4γ−1min − 2. Thus, by Lemma 4, we get a randomized
k-committee selection rule (for any m and k ∈ [m]) that achieves distortion at most 4γ−1min − 2. Finally, by Lemma 3,
we get a randomized PB rule with the desired distortion.

We prove that this is asymptotically optimal as a function ofm in Appendix B.4, thereby proving that our reduction
is, in a sense, tight. Deriving the optimal dependence on γmin is left as an open question.

Theorem 4 (lower bound). For all randomized f ,

distrbv(f) > ln(m)/2.

4 Rankings by Value for Money
In the ballot format rankings by value for money (vfm), Lvfm is still the set of all rankings over alternatives, but now
each voter i submits a ranking ρi of the alternatives by their PS-value divided by cost, i.e., such that for every a, b ∈ A,
vi(a)/c(a) > vi(b)/c(b) implies a �ρi b; the voter can break ties arbitrarily.

4.1 Deterministic Rules
Benadè et al. [2021] show that no deterministic rule for rankings by value for money can achieve bounded distortion,
even under the unit-sum assumption. Moreover, in their construction, all voters submit the same ranking. Adding any
amount of public spirit would therefore leave the rankings and their analysis unchanged, implying that the distortion
remains unbounded even with public spirit. We formalize this in Appendix C.1.

Theorem 5 (lower bound). For rankings by value for money, every deterministic rule f has unbounded distortion:
distvfm(f) =∞.

4.2 Randomized Rules
For randomized rules, we show the same upper bound (up to a constant) for rankings by value for money as for
rankings by value. The result uses a similar construction, too: First, we bucket alternatives as in Lemma 3, so that
the alternatives in each bucket differ in cost by a factor of at most 2. Due to these similar costs, a ranking by value
for money of the alternatives within any is a good approximation of their ranking by value, allowing us to apply our
reductions from PB to committee selection to single-winner selection, except we lose an additional factor of 2. The
full proof is in Appendix C.2.

Theorem 6 (upper bound). For rankings by value for money, there exists a randomized rule f with distortion

distvfm(f) 6 8 (dlog2(m)e+ 1)
(
2γ−1min − 1

)
.

Whether this is (asymptotically) the best distortion that randomized rules for rankings by value for money can
achieve remains an open question.

5 Knapsack Votes
For the ballot format knapsack (knap), the set of possible ballots Lknap = F is the set of all budget-feasible subsets of
A. Each voter i submits the subset she values most: ρi ∈ argmaxS∈calF vi(S). This amounts to asking each voter to
solve her own personal knapsack problem.

7



5.1 Deterministic Rules
Benadè et al. [2021] prove that, under the unit-sum assumption, any deterministic rule with knapsack votes has distor-
tion in Ω(2m/

√
m). This exponential lower bound might suggest that knapsack votes carry little information useful

for welfare maximization. However, we show that under public-spirited voting, knapsack votes permit deterministic
rules to achieve distortion at most polynomial in m.

Theorem 7 (upper bound). For knapsack votes, there exists a deterministic rule f with distortion

distknap(f) 6 4m3(γ−2min − γ
−1
min) +m.

Proof sketch. To build an efficient voting rule, we need information on whether vi(a) > vi(b) for voters i ∈ N
and alternatives a, b ∈ A. Knapsack votes give this to us in a peculiar way: For subsets of alternatives A1, A2 ⊆ A, if
c(A1) > c(A2) and yet voter i includes all ofA1 but none ofA2 in their knapsack vote, we know that vi(A1) > vi(A2).
Otherwise, the voter could have swapped A1 with A2 to get another feasible subset of higher utility. Thus, costly
alternatives with many votes are extremely valuable. As such, the voting rule f that gives this bound goes out of its
way to pick an expensive alternative a that sufficiently many voters included in their knapsacks. Then, using Lemma 1,
it prunes all alternatives b such that vi(a) > vi(b) for sufficiently many voters. This process continues until the budget
is exhausted. The formal proof is in Appendix D.1.

For the special case of committee selection, we can improve this bound to m2(γ−1min − 1) + m, as shown in Theo-
rem 14, Appendix D.3.

Finally, we lower-bound the distortion of deterministic rules with knapsack votes. In the instance, c(a) = 1 for
all a ∈ A, thereby reducing the problem to single-winner selection with only plurality votes. The bound then follows
using the same construction as in Proposition 3.15 of Flanigan et al. [2023].

Theorem 8 (lower bound). For knapsack votes, every deterministic rule f has distortion

distknap(f) > mγ−1min −m+ 1.

5.2 Randomized Rules
For randomized rules, we prove a slightly weaker lower bound that is γmin times our lower bound for deterministic
rules. As γmin goes from 0 to 1, the lower bound for deterministic rules goes from unbounded to 1 while that for
randomized rules goes from m to 1. It is easy to observe that both lower bounds are tight at both extremes, but there
may be room for improvement for intermediate values of γmin. The proof is in Appendix D.2.

Theorem 9 (lower bound). For all randomized rules f ,

distknap(f) > m(1− γmin) + γmin.

Remark 2 (upper bound). Note that ignoring all the ballots and simply picking a single alternative uniformly at
random trivially yields an upper bound of m. Hence, the lower bound in Theorem 9 is tight at least in m. It is
worth noting that the optimal distortion of randomized rules for knapsack votes is also Θ(m) under the unit-sum
assumption [Benadè et al., 2021].

6 Threshold Approval Votes
Finally, we investigate the distortion under the ballot format of threshold approval votes. Under this ballot format with
threshold τ > 0 (τ -th), each voter i reports the subset of alternatives for which her PS-value is at least a τ fraction of
her total PS-value for all alternatives in A, i.e., ρi = {a ∈ A : vi(a) > τ ·

∑
b∈A vi(b)}. Thus, Lτ -th = 2A, as with

knapsack votes. Benadè et al. [2021] introduce this ballot format for unit-sum utilities and our definition extends it to
arbitrary utilities.1

1One could also conceive of using an absolute threshold (i.e., voter i asked to approve all a with vi(a) > τ ), instead of making it relative to the
total value. But in Appendix E.1, we show that this leads to the worst possible distortion: unbounded for deterministic rules and m for randomized
rules.
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6.1 Deterministic Rules
By setting τ = 1/m, we can achieve the following distortion upper bound.

Theorem 10 (upper bound). For threshold approval votes with threshold τ = 1/m, there exists a deterministic rule f
with distortion

dist(1/m)-th(f) 6 m
(
mγ−1min −m+ 1

)
.

Proof sketch. With τ = 1/m, each voter must approve at least one alternative. Thus, the most approved alternative
must be approved by at least n/m voters. Lemma 1 implies that picking such an alternative achieves the desired bound.
The proof is in Appendix E.2.

As with rankings by value, it turns out that linear distortion is unavoidable, even when voters exhibit perfect public
spirit and submit the same vote.

Theorem 11 (lower bound). For all deterministic f and all threshold values τ > 0,

distτ -th(f) > m− 1.

Proof sketch. Consider the input profile where every voter only approves alternative a, and a cost function where the
rule can either select a or all other alternatives. No matter which decision the rule makes we define a utility matrix that
gives the desired distortion. The full proof is found in Appendix E.3.

6.2 Randomized Rules
Turning to randomized rules for threshold approval votes with threshold τ , we get the same results under public-
spirited behavior with arbitrary utilities as Benadè et al. [2021] get under the unit-sum assumption.

Theorem 12 (lower bound). For threshold approval votes with any threshold τ > 0, every randomized rule f has
distortion

distτ -th(f) >
1

2

(⌊√
m

2

⌋
+ 1

)
.

Benadè et al. [2021] consider an additional source of randomness, whereby the designer samples a threshold τ from
a distribution R over support [0, 1], and then all voters are asked to submit their threshold approval votes using this
value of τ (same for all voters). We refer to this ballot format as randomized threshold approval votes with threshold
distribution D (D-rth). Note that LD-rth = Lτ -th = 2A. Since randomness is already introduced, it makes sense to
also allow the aggregation rule f to be randomized in this case. When defining the distortion of a randomized rule f ,
we take expectation over the sampling of threshold τ (before taking any worst case). The formal definition is given in
Section 6.

Theorem 13 (lower bound). For randomized threshold approval votes with the threshold sampled from any distribu-
tion D, every randomized rule f has distortion

distD-rth(f) >
1

2

⌈
log2(m)

log2(2 dlog2(m)e)

⌉
.

Theorems 12 and 13 are corollaries of Theorems 3.4 and 3.6 of Benadè et al. [2021], respectively. Their lower
bound, derived under the unit-sum assumption, carries over to our more general setup. While they do not allow public-
spirited behavior, in their construction the utility of each alternative is the same across all voters, ensuring that any level
of public-spirited behavior does not affect their construction. The only reason we provide full proofs in Appendices E.4
and E.5 is that Benadè et al. [2021] derive only an asymptotic lower bound by making several simplifying assumptions,
which we carefully remove to derive an exact lower bound.
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7 Discussion
Our work lays out several interesting open questions as in some cases, our upper and lower bounds do not asymptot-
ically match (see Table 1) either in m, γmin or both. In addition to PB, some gaps also remain for the special cases
of single-winner and committee selection — most notably, whether a deterministic single-winner rule with O(γ−1min)
distortion exists.

Our work posits, based on prior research, that democratic deliberation in real-world PB may cause voters to be
public-spirited. However, modeling the exact level of public spirit achieved and using this to in turn optimize the design
of the deliberation process itself would be an important direction for future research. More broadly, distortion has been
studied in models beyond voting, such as matching [Filos-Ratsikas et al., 2014] and fair division [Halpern and Shah,
2021], to which the public-spirit model can also be applied. Finally, under the public-spirit model, participants take
the utilitarian welfare into account when submitting their preferences, which works well since the goal is to optimize
the utilitarian welfare as well. But the idea of distortion has been extended to other objectives such as the Nash welfare
or proportional fairness [Ebadian et al., 2022], which raises the question: what form of public-spirit can be helpful in
optimizing such objectives and how can it be cultivated?
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Appendix

A Proofs from Section 2 (Preliminaries)

A.1 Proof of Lemma 1
Lemma 1. Let A1, A2 ⊆ A be two arbitrary sets of alternatives. For any fixed constant α > 0, let NA1�A2 = {i ∈
N : αvi(A1) > vi(A2)}. Then:

sw(A2)

sw(A1)
6 α

(
1− γmin

γmin

n

|NA1�A2 |
+ 1

)
.

Proof. The proof is the same as the proof of Lemma 3.1 by Flanigan et al. [2023]. Indeed, for each voter i ∈ NA1�A2
,

we know that αvi(A1) > vi(A2), and so:

α

(
(1− γi)ui(A1) + γi

sw(A1)

n

)
> (1− γi)ui(A2) + γi

sw(A2)

n
> γi

sw(A2)

n
.

Dividing by γi and using the fact that 1−γi
γi

is decreasing in γi we have:

α

(
1− γmin

γmin
· ui(A) +

sw(A1)

n

)
>

sw(A2)

n
.

Summing over all voters in NA1�A2 ,

α

(
1− γmin

γmin

∑
i∈NA1�A2

ui(A1) +
sw(A1) |NA1�A2

|
n

)
>

sw(A2) |NA1�A2
|

n
.

Using the fact that
∑
i∈NA1�A2

ui(A1) 6
∑
i∈N ui(A1) = sw(A1),

α

(
1− γmin

γmin
sw(A1) +

sw(A1) |NA1�A2
|

n

)
>

sw(A2) |NA1�A2
|

n
,

and, after some simplification, we finally get the desired upper bound:

sw(A2)

sw(A1)
6 α

(
1− γmin

γmin

n

|NA1�A2
|

+ 1

)
.

A.2 Distortion Without Public Spirit
In this section, we consider the distortion that can be achieved under various ballot formats without an assumption of
public-spirited voters, or equivalently, when γi = 0 for every voter i ∈ N . This serves as a benchmark and motivates
the need for cultivating public spirit among voters. It is also interesting to note that without any public spirit, the
information in the ballots is useless as rules that ignore the ballots altogether turn out to be worst-case optimal. In
contrast, the worst-case optimal rules in the presence of even a little bit of public spirit are both qualitatively and
quantitatively fairer.

Proposition 1. For any ballot format X ∈ {rbv, vfm, knap, τ -th, D-rth} (with any threshold τ and threshold distribu-
tion D), every deterministic rule has unbounded distortion when γi = 0 for all i ∈ N .

Proof. First, consider the ballot formats other than randomized threshold approval votes. For deterministic threshold
approval votes, pick any threshold τ ∈ [0, 1]. Let n be even.

Consider an instance as follows. The cost of each alternative is 1, i.e., c(a) = 1 for each a ∈ A. Pick any two
alternatives a1, a2 ∈ A, and let the input profile be as follows. Partition the voters into two equal-sized groups N1, N2.
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• Under X ∈ {rbv, vfm}, each voter in N1 ranks a1 at the top, a2 next, and the remaining alternatives after-
wards (arbitrarily); and each voter in N2 ranks a2 at the top, a1 next, and the remaining alternatives afterwards
(arbitrarily).

• Under X ∈ {knap, τ -th} (where τ 6= 0), each voter in N1 submits {a1} and each voter in N2 submits {a2}.

• Under X = τ -th with τ = 0, every voter approves all the alternatives.

Fix any of the above ballot formats X and consider any deterministic rule fX. Suppose it picks alternative a. Note
that at least one of a1 and a2 is not picked by fX. Due to the symmetry, assume without loss of generality that it is a1.
Then, for an arbitrarily chosen ε ∈ (0, 1), consider the following consistent utility matrix U .

• Each voter in N1 has utility 1 for a1 and 0 for all other alternatives.

• Each voter in N2 has utility ε for a2 and 0 for all other alternatives.

Then, the distortion of fX is at least
sw(a1, U)

sw(a, U)
=

n/2

ε · n/2
=

1

ε
.

Because ε ∈ (0, 1) was chosen arbitrarily, we can take the worst case by letting ε → 0, which establishes unbounded
distortion.

For randomized threshold approval votes with any threshold distribution D, we cannot fix the input profile upfront
as it depends on the threshold τ sampled from D. However, we can assume that for each τ the rule sees the profile
described above for τ -th. The proof continues to work because the consistent utility matrix U described above is
independent of the value of τ (and hence, can be set upfront without knowing the value of τ ).

Proposition 2. For any ballot format X ∈ {rbv, vfm, knap, τ -th, D-rth} (with any threshold τ and threshold distribu-
tion D), every randomized rule has distortion at least m when γi = 0 for all i ∈ N and this is tight.

Proof. For the upper bound under all ballot formats, it suffices to show that the trivial randomized rule f , which does
not take any ballots as input and simply returns a single alternative chosen uniformly at random, achieves distortion
at most m. Fix any instance U and let A∗ be an optimal budget-feasible set of alternatives. Then, the expected social
welfare under f is

1

m

∑
a∈A

sw(a, U) >
1

m
sw(A∗, U),

which implies the desired upper bound of m on the distortion of f .
For the lower bound, we simply extend the argument from the proof of Proposition 1. Define an instance with m

alternatives a1, a2, . . . , am, all with cost 1 (i.e., c(aj) = 1 for all j ∈ [m]). Fix any randomized rule fX for each ballot
X in the statement of the proposition.

Let us first consider ballot formats other than randomized threshold approval votes. Consider the following sym-
metric profiles for each ballot format. Suppose n divides m and voters are partitioned into m equal-size groups
N1, . . . , Nm. Then:

• for X ∈ {rbv, vfm}, for each j ∈ [m], every voter in Nj submits the ranking aj � aj+1 � · · · � am � a1 �
· · · � aj−1, and

• for X = {knap, τ -th} (for any τ ), for each j ∈ [m], every voter in Nj submits the set of alternatives {aj}.

For τ -threshold approval votes, there is an edge case where this profile may not be feasible with τ = 0, in which case
we can set the profile to have every voter approving all alternatives. The utility matrix defined below would still remain
consistent in this case.

For each ballot format X, the corresponding rule must pick at least one alternative with probability pX 6 1/m.
Due to the symmetry, we can assume without loss of generality that this alternative is a1.

Fix any ε ∈ (0, 1). We define a consistent utility matrix U that works for all of the above ballot formats:
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• Every voter in N1 has utility 1 for a1 and 0 for all other alternatives.

• For each j ∈ {2, . . . ,m}, every voter in Nj has utility ε for aj and 0 for all other alternatives.

Finally, notice that the maximum possible social welfare is sw(a1, U) = 1, whereas the expected social welfare
under the rule fX is pX · 1 + (1− pX) · ε 6 1/m+ (1− 1/m) · ε. Thus, the distortion of fX is at least 1

1/m+(1−1/m)·ε .
Since ε ∈ (0, 1) was chosen arbitrarily, we can take the worst case by letting ε → 0, in which case we get that the
distortion must be at least m.

For randomized threshold approval votes with threshold distribution D, we cannot fix the input profile as the input
profile depends on the threshold τ sampled fromD. However, we can assume that the rule sees the generic input profile
described above (where each voter approves only her most favorite alternative) for any τ 6= 0 and the edge-case input
profile (where every voter approves all the alternatives). Due to the symmetry, the rest of the argument goes through
as the final utility matrix U constructed above is consistent with these input profiles for all τ .

B Proofs from Section 3 (Rankings by Value)

B.1 Proof of Theorem 1
Theorem 1 (lower bound). For rankings by value, every deterministic rule f has distortion

distrbv(f) > (m− 1)γ−1min.

Proof. Consider an instance with A = {a, b1, . . . bm−1}, where a costs 1 and every other alternative costs 1/(m− 1).
Define p = 1−γmin

1−γmin+m2 . Let N1 be a set of n(1 − p) voters and N2 = N \ N1. Suppose that members of N1 submit
ranking (a � b1 � . . . � bm−1) and members of N2 vote (b1 � . . . � bm−1 � a).

Now consider two cases.

Case 1: If the aggregation rule selects a, consider utility matrix U where members of N1 have utility of γminp
1−pγmin

for
a and 0 for the rest, while members of N2 have utility of 0 for a and 1 for the rest of the alternatives. This means
sw(a) = n(1− p) γminp

1−γminp
, and sw(b) = np for b ∈ A \ {a}. Alongside with the PS-vector ~γ = [γmin]n we have value

matrix V~γ,U first of all we have to make sure that this is consistent with the input profile. For i ∈ N1,

vi(a) = (1− γmin)
γminp

1− γminp
+ γmin(1− p) γminp

1− γminp

= (1− γminp)
γminp

1− γminp
= γminp,

and vi(bj) = (1−γmin)×0+γminp = γminp. Therefore, the value matrix is consistent with the ranking of the members
of N1. On the other hand for i ∈ N2 we have, vi(a) = γmin(1− p) γminp

1−γminp
, and vi(bj) = 1− γmin + γminp, where for

p = 1−γmin
1−γmin+m2 we have:

vi(a) =
γ2minm

2 (1− γmin)

(m2 + 1− γmin) (m2 + (1− γmin)2)
,

vi(bj) =
(m2 + 1)(1− γmin)

m2 + 1− γmin
.

This gives us:

vi(a)

vi(bj)
=

γ2minm
2

(m2 + 1) (m2 + (1− γmin)2)
6 1

=⇒ vi(bj) > vi(a),

and therefore the votes of voters in N2 are consistent with the value matrix V~γ,U .
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By picking budget-feasible set {b1, . . . , bm−1} we can get a social welfare of n(m − 1)p, while instead we got
n(1− p) γminp

1−pγmin
by choosing a. This leaves us with a distortion of

(m− 1)(1− pγmin)

(1− p)γmin
.

Since p > 0 and γmin 6 1, p > pγmin, and so 1− pγmin > 1− p. Therefore, we get the desired distortion:

(m− 1)(1− pγmin)

(1− p)γmin
>
m− 1

γmin
.

Case 2: If the aggregation rule does not select a, consider the utility matrix U where members of N1 have utility of
1 for a and 0 for the rest, while members of N2 have utility of 0 for a and γmin(1−p)

1−γmin(1−p) for the rest of the alternatives.

This gives us sw(a) = n(1 − p), and sw(b) = np γmin(1−p)
1−γmin(1−p) for b ∈ A \ {a}. Again we have to check that the value

matrix V~γ,U is consistent with the input profile. For i ∈ N1 we have: vi(a) = 1− γmin + γmin(1− p) = 1− γminp, and
vi(bj) = γminp

γmin(1−p)
1−γmin(1−p) .

The value matrix is consistent with the ranking of the members of N1, i.e. vi(a) > vi(bj), as:

γmin 6 1 =⇒ 0 6 γminp 6 1− γmin(1− p)

=⇒ γminp
1

1− γmin(1− p)
6 1

=⇒ γminp
γmin(1− p)

1− γmin(1− p)
6 1− γminp.

Moreover, for i ∈ N2 we have: vi(a) = γmin(1− p), and

vi(bj) = (1− γmin)
γmin(1− p)

1− γmin(1− p)
+ γminp

γmin(1− p)
1− γmin(1− p)

= (1− γmin(1− p)) γmin(1− p)
1− γmin(1− p)

= γmin(1− p).

So we have vi(a) = vi(bj) which means that the value matrix is consistent with the ranking of the members of N2 as
well.

Since a is not picked by the aggregation rule, we get a maximum social welfare of (m − 1)np γmin(1−p)
1−γmin(1−p) when

we could have gotten a social welfare of np from a meaning a distortion of:

distrbv(f) >
1− γmin(1− p)
γminp(m− 1)

>
m− 1

γmin
.

All the conditions above hold for m > 2, so we have a distortions of at least: m−1γmin
.

B.2 Proof of Lemma 4
Lemma 4. Fix any k ∈ [m], and d > 1. If there exists a randomized single-winner rule with distortion at most d for
each m′ 6 m, then there exists a randomized k-committee selection rule with distortion at most d.

Proof. Let A∗ = {a∗1, . . . , a∗k} be the optimal budget-feasible set, sorted from highest social welfare to the lowest so
that i < j =⇒ sw(a∗i ) > sw(a∗j ). Let S denote the set of alternatives that our algorithm picks.

Consider the ith iteration of the procedure. Let a+i be the alternative with the highest social welfare among the
remaining alternatives, and ai be the random alternative picked by the single-winner voting rule in this round. We know

that sw(a+i ) > sw(a∗i ) and since the single-winner rule has expected distortion of d, we have E[sw(ai)] > sw(a+i )

d

which implies E[sw(ai)] >
sw(a∗i )
d . Summing this over all iterations and using linearity of expectation, we get that
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k∑
i=0

E[sw(ai)] >
k∑
i=0

sw(a∗i ) / d

=⇒ sw(A∗) /E[sw(S)] 6 d.

B.3 Proof of Lemma 5
Lemma 5. There exists a randomized single-winner voting rule with distortion at most 4γ−1min − 2.

Proof. Define the domination graph to be a directed graph G with vertices A and an edge between every two vertices,
oriented so that if a beats b in a pairwise election, then the edge goes from a to b. In the case of ties, we may pick
orientation arbitrarily.

Due to a known implication of Farkas’ lemma (see Theorem 2.4 of Harutyunyan et al. [2017]), there exists a
probability distribution p over the vertices such that for any vertex v ∈ A, the probability of picking v or a vertex with
an edge to v is at least 1/2.

The randomized voting rule that picks alternatives using this distribution then achieves the required bound. Indeed,
let a∗ be the optimal alternative. If we pick a∗ or an alternative that beats a∗ in a pairwise election, b, we get distortion
by Lemma 1:

sw(a∗)

sw(b)
6 2

1− γmin

γmin
+ 1.

Let the set of such alternatives be A′. Then, the distortion of our rule is:

sw(a∗)∑
a∈A p(a)sw(a)

>
sw(a∗)

swa∈A′p(a)sw(a)

>
sw(a∗)

mina∈A′ sw(a)
∑
a∈A p(a)

> 2
sw(a∗)

mina∈A′ sw(a)

> 4
1− γmin

γmin
+ 2 =

4

γmin
− 2,

as claimed.

B.4 Proof of Theorem 4
Theorem 4 (lower bound). For all randomized f ,

distrbv(f) > ln(m)/2.

Proof. Define k = d
√
me − 1 and partition the alternatives into k + 1 buckets A1, . . . , Ak, B such that for ` ∈ [k],

A` consists of ` alternatives with cost 1/` each, and B includes the rest of the alternatives with cost 1 each. Note that
each A` is a feasible subset.

Suppose that all the voters have the same ranking where they rank every alternative in A` higher than every
alternative in A`′ for all ` < `′ (and breaks ties within each A` arbitrarily), and rank members of B at the end of their
ranking.

Consider any aggregation rule. For each a ∈ A, let pa denote the marginal probability of alternative a being
included in the distribution returned by the rule on this profile. For each ` ∈ [k], define p̄` = 1

`

∑
a∈S` pa as the

average of the marginal probabilities of alternatives in S` being chosen. Since the rule returns a distribution over
budget-feasible subsets of alternatives (with total cost at most 1), the expected cost under this distribution is also at
most 1. Due to additivity of cost and linearity of expectation, the expected cost can be written as

∑
a∈A

pa · ca >
∑
`∈[k]

(
1

`

∑
a∈A`

pa

)
=
∑
`∈[k]

p̄` 6 1. (1)
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Next, fix an arbitrary t ∈ [k]. Consider the following consistent utility function of the agent (which, in this case, is
also her PS-value function): v(a) = u(a) = 1 if a ∈ ∪`∈[t]S` and v(a) = u(a) = 0 otherwise. It is evident that the
budget-feasible subset with the highest social welfare (i.e., one which contains the highest number of alternatives of
value 1 to the agent) is At, and sw(At) = t. In contrast, using the additivity of the utility function over the alternatives
and linearity of expectation, we can write the expected social welfare under the rule as

∑
a∈∪`∈[t]S` pa·1 =

∑
`∈[t] `·p̄`,

which means the distortion is at least
Dt =

t∑
`∈[t] ` · p̄`

.

Because t ∈ [k] was fixed arbitrarily, we get that the distortion is at least D = maxt∈[k]Dt. Our goal is to show
that D = Ω(logm).

Note that for each t ∈ [k], we have

t∑
`∈[t] ` · p̄`

6 D ⇒
∑
`∈[t]

` · p̄` >
t

D
.

Dividing both sides by t(t+ 1), we have that∑
`∈[t]

`

t(t+ 1)
· p̄` >

1

D · (t+ 1)
,∀t ∈ [k].

Taking the sum over t ∈ [k], the right hand side sums to (Hk+1 − 1)/D. In the left hand side, the coefficient of
each p̄` is

` ·
k∑
t=`

1

t(t+ 1)
= ` ·

(
k∑
t=`

1

t
− 1

t+ 1

)
= ` ·

(
1

`
− 1

k + 1

)
6 1.

Hence, the left hand side sums to at most
∑
`∈[k] p̄` 6 1. Since the left hand side is at least the right hand side, we

have that
1 >

Hk+1 − 1

D
⇒ D > Hk+1 − 1 = Hd√ke − 1,

which completes the proof after observing that Hd√me > ln(d
√
me) > ln(

√
m) = 1

2 ln(m).
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C Proofs from Section 4 (Rankings by Value for Money)

C.1 Proof of Theorem 5
Theorem 5 (lower bound). For rankings by value for money, every deterministic rule f has unbounded distortion:
distvfm(f) =∞.

Proof. We use the exact same construction used by Benadè et al. [2021]. Fix a, b ∈ A, and let ca = ε > 0 and cx = 1
for all x ∈ A \ {a}. Construct an input profile ~ρ where each voter has alternatives a and b in positions 1 and 2, and let
f be some deterministic aggregation rule.

If f(~ρ, c) 6= a, then construct a utility profile where ui(a) = 1 and ui(x) = 0 for all x ∈ A \ {a}. Then the
distortion is infinite.

If f(~ρ, c) = a, then construct a utility profile where ui(a) = ε, ui(b) = 1 and ui(x) = 0 for x ∈ A \ {a, b}. Then,

vi(a)

ca
=

(1− γi)ε+ γi
(nε)
n

ε
=

(1− γi) + γi
1

=
vi(b)

cb
,

and so the ranking of each voter is consistent with this utility profile. But, the distortion is:

n

nε
=

1

ε
,

which as ε→ 0 tends to infinity.

C.2 Proof of Lemma 6
Lemma 6. For rankings by value for money, there exists a k-committee-selection voting rule f such that on all sets of
alternatives with costs in [2−`, 21−`] for some ` > 0, f has distortion 4(2γ−1min − 1).

Proof. Notice that if a beats b, then vi(a)/ca > vi(b)/cb at least n/2 times. Since the costs differ by at most a factor
of 2, 2vi(a) > vi(b).

We can use the exact same rule as in Lemma 5. Indeed, everything is the same, except that when b beats a∗ in a
pairwise election (i.e. at least n/2 times), we get the following distortion by Lemma 1:

sw(a∗)

sw(b)
6 2

(
2

1− γmin

γmin
+ 1

)
.

Then, the distortion of our rule is, by the same analysis in Lemma 5:

8
1− γmin

γmin
+ 4.

From here, we can convert this single winner rule into a committee selection rule with the same distortion by using
Lemma 4.

C.3 Proof of Theorem 6
Theorem 6 (upper bound). For rankings by value for money, there exists a randomized rule f with distortion

distvfm(f) 6 8 (dlog2(m)e+ 1)
(
2γ−1min − 1

)
.

Proof. Let g be the rule in Lemma 6, and let the distortion it achieves,
(

4 1−γmin
γmin

+ 2
)

, be d. By the same mechanism
in Lemma 3, we will convert g to a ranking by value per cost rule.

Indeed, divide the alternatives into buckets A0, A1, . . . , Adlog2(m)e, where for i 6= 0:

Ai =

{
a ∈ A :

2i−1

m
< ca 6

2i

m

}
,
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and
A0 = {a ∈ A : ca 6 1/m}.

Recall the mechanism used:

1. Pick the bucket Aj uniformly at random.

2. Consider the restricted election with only the alternatives in Aj .

3. Use g to pick the top
⌊
m
2j

⌋
alternatives in the restricted election.

Consider any PB instance. Split the alternatives into buckets A0, A1, . . . , Adlog2(m)e, where for i 6= 0:

Ai =
{
a ∈ A : 2i−1/m < ca 6 2i/m

}
,

and
A0 = {a ∈ A : ca 6 1/m}.

The randomized PB rule f is as follows:

1. Pick j ∈ {0, 1, . . . , dlog2(m)e} uniformly at random.

2. Consider the restricted instance with only the alternatives in Aj .

3. With m′ = |Aj | and k = min(m′,
⌊
m
2j

⌋
), use the k-committee selection rule fm′,k on this restricted instance to

pick a set of k alternatives and return it.

Let A∗ be the optimal budget-feasible subset of the alternatives, L∗j be the optimal
⌊
m
2j

⌋
-committee of Aj , and Lj

be the one selected by the k-committee rule. For j 6= 0, A∗ ∩ Aj is of size at most m
2j−1 . That means sw(A∗ ∩ Aj) 6

2sw(L∗j ) for any j 6= 0.
In addition for j = 0, L∗0 = A0 which implies sw(A∗ ∩ Aj) 6 sw(L∗j ). Since the k-committee selection rule

has distortion of d for any j we have sw(L∗j ) 6 dsw(Lj) which gives us sw(A∗ ∩ Aj) 6 2dsw(Lj). Let δ be the
distribution of the output of the mechanism, we have:

EL∼δ[sw(L)] =
1

dlog2(m)e+ 1

dlog2(m)e∑
j=0

sw(Lj)

>
1

dlog2(m)e+ 1

dlog2(m)e∑
j=0

sw(A∗ ∩Aj)
2d

>
sw(A∗)

2d(dlog2(m)e+ 1)
,

which gives us the desired distortion bound.

D Proofs from Section 5 (Knapsack)
Let us first introduce additional notation. Given any n knapsack sets and any subset of alternatives S ⊆ A, let nS :=∑
i∈N I(S ⊆ ρi) be the number of voters whose knapsack set contains S. We use shorthand na := n{a} and na,b :=

n{a,b} for all a, b ∈ A. Then, informally, na,b is the number of voters who vote for both a and b.
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D.1 Proof of Theorem 7
Theorem 7 (upper bound). For knapsack votes, there exists a deterministic rule f with distortion

distknap(f) 6 4m3(γ−2min − γ
−1
min) +m.

Proof. For an arbitrary input, define A0 := {a ∈ A : na > n
2m} and initialize A− = A0 and A+ = ∅. We will return

A+ after running the following until A− is empty:

1. Remove the alternative b with the highest cost in A− and add it to A+.

2. Remove from A− all alternatives a such that

na,b
nb

6
m− 1

m
.

First, we will prove that this algorithm always returns a budget-feasible subset. Suppose for the sake of contradic-
tion that at some point, the max-cost item in A−, call it am, is no longer within budget: i.e., cam +

∑
b∈A+ cb > 1. We

will show that there exists some b ∈ A+ such that nb,amnb
6 m−1

m .
Let bm ∈ A+ be the first alternative added to A+, so that it has maximum cost. Then, for all b ∈ A+ \ {bm},

because b wasn’t pruned in step 2 directly after adding bm, it must be that nb,bmnbm
> m−1

m . By the same reasoning, the
same must be true for a — that is, na,bmnbm

> m−1
m . Summing over these inequalities, we get that:

na,bm +
∑

b∈A+\{bm}

nbm,b

> nbm

[
m− 1

m
+
m− 1

m

(∣∣A+
∣∣− 1

)]
= nbm

m− 1

m

∣∣A+
∣∣ .

Notice that the left hand side is at most the number of voters who voted for bm, multiplied by the number of other
alternatives in {a} ∪ |A+| they could have voted for. Since {a} ∪ A+ is an infeasible set, no voter could have voted
for all of them. Thus, each voter can only vote for |A+| alternatives in {a} ∪ |A+|, and so only |A+| − 1 alternatives
other than bm. The left hand side is then at most (|A+| − 1)nbm , and therefore

(
∣∣A+

∣∣− 1)nbm > nbm
m− 1

m

∣∣A+
∣∣ .

Simplifying, we can see that this is impossible, as this is equivalent to the inequality:∣∣A+
∣∣− 1 >

∣∣A+
∣∣− ∣∣A+

∣∣ /m.
We have encountered a contradiction, so our premise — that we added an a to A+ that exceeded the budget — must
have been false.

Now, we will show that if an a ∈ A− is pruned in Step 2, then sw(a)
sw(A+) 6 2m2 1−γmin

γmin
+ 1. Indeed, because we

prune it, there exists some b ∈ A+ such that:
na,b
nb

6
m− 1

m
.

Since b ∈ A0, we have nb > n/2m and so nb−na,b, the number of voters that vote for b but not a, is at least n/(2m2):

nb − na,b > nb −
m− 1

m
nb >

n

2m2
.
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Notice that because we pick the highest cost alternative b in each iteration, any alternative pruned later by the algorithm
must have a cost lower than cb. Therefore, any time a voter votes for b but not a, they could have replaced b with a and
have gotten another feasible set. The fact that they did not means that they prefer b to a. We have at least n/(2m2) of
such voters (that prefer b to a), by Lemma 1 we can conclude that sw(a)

sw(A+) 6 2m2 1−γmin
γmin

+ 1, as needed.
Extending this result, define m0 := |A0|, we get that

sw(A0)

sw(A+)
6 m0

(
2m2 1− γmin

γmin
+ 1

)
.

On the other hand, for alternatives outside of A0, the distortion must be small. Let A∗ be the optimal budget-
feasible set of alternatives. Then:

sw(A∗ \A0)

sw(A+)
=

sw(A∗ \A0)

sw(A0)
· sw(A0)

sw(A+)
.

It remains to bound sw(A∗\A0)
sw(A0)

. Because at most n/(2m) voters include each alternative in A \ A0 in their knapsack
set, and there are at most m−m0 such alternatives, we know that at most n(m−m0)/2m voters vote for alternatives
in A \A0, that is at least n(m+m0)/2m voters only vote for alternatives in A0. Observing that A∗ \A0 ∈ F (since
A∗ ∈ F), it must be that for all n(m + m0)/2m voters i who vote for only alternatives in A0, vi(A0) > vi(ρi) >
vi(A

∗ \A0) for each a ∈ A \A0. Therefore, by Lemma 1,

sw(A∗ \A0)

sw(A0)
6

2m

m+m0

1− γmin

γmin
+ 1.

Thus,

sw(A∗)

sw(A+)
6

sw(A0)

sw(A+)
+

sw(A∗ \A0)

sw(A+)
=

sw(A0)

sw(A+)
+

sw(A∗ \A0)

sw(A0)
· sw(A0)

sw(A+)

6
sw(A0)

sw(A+)

(
1 +

m

m0

1− γmin

γmin
+ 1

)
6 m0

(
2m2 1− γmin

γmin
+ 1

)(
m

m0

1− γmin

γmin
+ 2

)
6 2m3

(
1− γmin

γmin

)2

+ 4m3 1− γmin

γmin
+m

1− γmin

γmin
+ 2m

6 4m3
(
γ−2min − γ

−1
min

)
+ 3m.

D.2 Proof of Theorem 9
Theorem 9 (lower bound). For all randomized rules f ,

distknap(f) > m(1− γmin) + γmin.

Proof. Formally, consider a case where n is divisible by m, all the voters have the same PS-value of γ = γmin, and
every alternative a ∈ A has a cost of ca = 1. In this case, each vote consists of exactly one alternative. For any
alternative a ∈ A, let Na be the set of voters who vote for alternative a. Choose the input profile ~ρ so that n/m voters
vote for each alternative so that |Na| = n

m for all a ∈ A. Our randomized voting rule f must pick some alternative a∗

with probability at most 1/m.
Suppose that all voters in Na∗ have a utility of m(1−γ)+γ

γ for a∗ and utility zero for everything else. Moreover,
voters in Na with a 6= a∗ have utility 1 for a and zero utility for the rest of the alternatives. We can see that the social
welfare of a∗ is m(1−γ)+γ

γ · nm , and the social welfare of any other alternative is n
m .
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First of all, we have to make sure that this utility matrix and PS-vector yield a value matrix consistent with the
input profile. For any a 6= a∗ and i ∈ Na we have:

vi(a
∗) = γ

m(1− γ) + γ

γ
· 1

m

=
m(1− γ) + γ

m
= (1− γ) +

γ

m
= vi(a).

Furthermore, for voter i ∈ Na∗ and any a 6= a∗ as:

vi(a
∗) = (1− γ)

m(1− γ) + γ

γ
+ γ

m(1− γ) + γ

γ
· 1

m

=

(
1− γm− 1

m

)
m(1− γ) + γ

γ

=
m− γ(m− 1)

m
· m(m− γ) + γ

γ

=
γ

m
· (1− γ)m+ γ

γ
· m(m− γ) + γ

γ

>
γ

m
= vi(a),

where the last inequality follows from the fact that γ 6 1. That means the value matrix is consistent with the input
profile for all the voters.

After that, we can see the distortion that the rule incurs. We could have gotten a utility of n
m ·

m(1−γ)+γ
γ by choosing

a∗, but instead, we got the expected utility of the following

Ea∼f(~ρ,c)[sw(a)] 6
1

m
sw(a∗) +

m− 1

m
· n
m

=
1

m
· n
m
· m(1− γ) + γ

γ
+
m− 1

m
· n
m

= n

(
m(1− γ) + γ + (m− 1)γ

m2γ

)
=

n

γm
,

and so the distortion is at least:

distknap(f, ~ρ, c) =
sw(a∗)

Ea∼f(~ρ,c)[sw(a)]

>
n
m ·

m(1−γmin)+γmin
γmin
n

γminm

= m(1− γmin) + γmin.

D.3 Proof of Theorem 14
We can improve the analysis of the knapsack voting when all alternatives have the same cost.

Theorem 14. We can get a distortion of 1 + m
2 + 1−γmin

γmin
m2 in the deterministic knapsack setting for m/2-multiwinner

elections (or equivalently when ca = 2
m for all a ∈ A).
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Proof. The voting rule we will use is as follows: assign a plurality score to each alternative, where the score is simply
the number of times each alternative appears.

Let N(a) be the number of times alternative a appears, and let N(a, b) be the number of times some voter voted
for both a and b.

Pick the m/2 alternatives with the largest plurality score, A. Indeed, every alternative can appear at most n times,
as every voter can vote for them only once. Therefore, in the worst case, if the top m/2−1 alternatives appear n times
there must remain nm/2−n(m/2− 1) = n appearances of other alternatives. By the pigeonhole principle from here,
the remaining plurality winner must be chosen n/(m/2 + 1) > n/m times. Thus, the minimum number of times a
plurality winner can appear is n/m.

Moreover, because N(a) > N(b) for all a ∈ A and b /∈ A, and
∑
a∈AN(a) +

∑
b/∈AN(b) = mn/2, we get that

2
∑
a∈AN(a) > mn/2 and so

∑
a∈AN(a) > mn/4.

Then, let A∗ be the optimal set of alternatives. Note then that:

sw(A∗, U)

sw(A,U)
=

∑
a∗∈A∗ sw(a∗, U)∑
a∈A sw(a, U)

=

∑
a∗∈A∗∩A sw(a∗, U)∑

a∈A sw(a, U)
+

∑
a∗∈A∗\A sw(a∗, U)∑

a∈A sw(a, U)

6 1 +
∑

a∗∈A∗\A

sw(a∗, U)∑
a∈A sw(a, U)

. (2)

We will show that for all a∗ ∈ A∗ \A, there exists some a ∈ A such that:

sw(a∗)

sw(a)
6 2

1− γmin

γmin
m+ 1,

by considering two cases:

1. Suppose that for all a∗ ∈ A∗ \ A, there exists some a ∈ A such that N(a, a∗)/N(a) 6 1/2. Then, N(a) −
N(a, a∗) > N(a)/2 > n/2m. Therefore, by Lemma 1:

sw(a∗)

sw(a)
6 2

1− γmin

γmin
m+ 1.

2. Suppose that for some a∗ ∈ A∗ \ A, and for all a ∈ A, N(a, a∗)/N(a) > 1/2. Let amax = argmaxa∈AN(a)
and amin = argmina∈AN(a). Then, in particular,

N(amax) < 2N(amax, a
∗)

6 2N(a∗)

6 2N(amin),

where the last equality holds because amin is a plurality winner, and a∗ isn’t

Since (m/2)N(amax) >
∑
a∈AN(a) > nm/4, N(amax) > n/2 and so N(amin) > n/4. Therefore, we can

improve the lower bound for plurality winners: for all a ∈ A, N(a) > n/4.

By Lemma 7 below, we know that for all a∗ ∈ A∗ \ A, there exists some a ∈ A such that N(a, a∗)/N(a) 6
(m− 2)/m. Therefore, N(a)−N(a, a∗) > 2N(a)/m > n/2m. Thus, by Lemma 1 in [Flanigan et al., 2023]:

sw(a∗)

sw(a)
6 2

1− γmin

γmin
m+ 1.
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From here we can prove an m2 bound easily by taking a∗max = argmaxa∗∈A∗sw(a∗, U). Then, continuing off of
(2), and using the fact that there exists some â ∈ A such that sw(a∗max,U)

sw(â,U) 6 2 1−γmin
γmin

m+ 1:

sw(A∗, U)

sw(A,U)
6 1 +

m

2
· sw(a∗max, U)∑

a∈A sw(a, U)

6 1 +
m

2
· sw(a∗max, U)

sw(â, U)

6 1 +
1− γmin

γmin
m2 +

m

2
,

as claimed!

Lemma 7. WhenA∗ is the optimal subset andA is the subset chosen by the repeated plurality rule, for all a∗ ∈ A∗\A,
there exists some a ∈ A such that:

N(a, a∗)

N(a)
6 (m− 2)/m.

Proof. Note that
∑
a∈AN(a, a∗) is the number of times a voter votes for some alternative and a∗. Each voter can vote

for at most m/2 alternatives. Since there are then at most m/2 − 1 alternatives in A that any voter who votes for a∗

could have voted for: ∑
a∈A

N(a, a∗) 6 N(a∗)(m/2− 1) 6 N(a∗) · m− 2

2
.

From here, let amin = argmina∈AN(a, a∗). Then, substituting this into the inequality above, and using that |A| = m
2 :

m

2
N(amin, a

∗) 6 N(a∗) · m− 2

2
.

Since N(a∗) 6 N(amin) as a∗ is not in A and therefore must occur at most as many times as any plurality winner,

m

2
N(amin, a

∗) 6 N(amin) · m− 2

2
,

and so finally
N(amin, a

∗)

N(amin)
6
m− 2

m
,

as desired!
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E Proofs from Section 6

E.1 Proof of Proposition 3
It is easy to see that without a unit sum assumption, the distortion of any deterministic rule is unbounded, even with
public-spirited voters.

Proposition 3. The distortion associated with deterministic fixed thresholds (using the same definition as in [Benadè
et al., 2021]) is unbounded for any choice of threshold.

Proof. Suppose we use a threshold of t. Then, consider an input profile where no voter approves any alternative.
Suppose that f picks a∗ ∈ A. Then, consider a preference profile where ui(a∗) = 0 and ui(b) = t/2 for all i ∈ N
and all b 6= a∗.

Then, vi(a∗) = (1− γi) · 0 + γi · 0n = 0 < t and vi(b) = (1− γi) · t/2 + γi · nt/2n = t/2 < t, meaning the utility
profile is consistent with the input, but the distortion is infinite.

E.2 Proof of Theorem 10
Theorem 10 (upper bound). For threshold approval votes with threshold τ = 1/m, there exists a deterministic rule f
with distortion

dist(1/m)-th(f) 6 m
(
mγ−1min −m+ 1

)
.

Proof. We can use the voting rule that simply picks the plurality winner: the alternative with most approvals. Let a be
the plurality winner.

Let S∗ be the optimal feasible subset of alternatives. Then, if voter i approves alternative a:

vi(a)∑
b∈A vi(b)

> 1/m,

and so:
mvi(a) > vi(A).

Notice that every voter must approve at least one alternative, as at least one alternative must have value at least the
average:

∑
a∈A vi(a)

m . Therefore, by the pigeonhole principle, the plurality winner must appear at least n/m times, and
so mvi(a) > vi(A) for at least n/m voters i.

By Lemma 1,
sw(A)

sw(a)
6 m

(
1− γmin

γmin
m+ 1

)
.

as claimed.

E.3 Proof of Theorem 11
Theorem 11 (lower bound). For all deterministic f and all threshold values τ > 0,

distτ -th(f) > m− 1.

Proof. Let t > 0 be the threshold.
Consider the case where alternative a costs 1, and alternatives b1, . . . , bm−1 cost 1

m−1 .
Suppose all voters approve only a. Then, we have two cases. If the voting rule f doesn’t pick alternative a, then

we incur infinite distortion when the utility of a is 1, and the utility of b1, . . . , bm−1 is 0 for all voters.
If f does pick a, then it cannot pick anything else as the budget is exhausted. Let the utility of a be t + ε and the

utility of bj be t− ε for all voters, and any small ε > 0.
Then, we could have gotten a utility of (m − 1) (t− ε), but instead get t + ε. As ε → 0, the distortion goes to

m− 1.
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E.4 Proof of Theorem 12
Theorem 12 (lower bound). For threshold approval votes with any threshold τ > 0, every randomized rule f has
distortion

distτ -th(f) >
1

2

(⌊√
m

2

⌋
+ 1

)
.

Proof. We are borrowing the construction from Theorem 3.4 in Benadè et al. [2021]. Consider the case where each
alternative has cost 1. We consider two cases. First suppose that τ 6 1/ b

√
mc. Fix a set S of b

√
m/2c+1 alternatives.

Construct the input profile ~ρ where ρi = S for all i ∈ N . There must exist a∗ ∈ S where Pr[a∗] 6 1/|S|. Consider
the utility matrix U where for all i ∈ N , ui(a∗) = 1/2 and for a ∈ S \ {a∗}, ui(a) = 2/ b

√
m/2c and ui(a) = 0 for

a ∈ A \ S. Note that since voters have identical utilities, we have ui(a) = vi(a) for any alternative a ∈ A. We have
sw(a∗) = n/2 and for a ∈ A \ {a∗}, sw(a) 6 n/

√
m. That gives us

distτ -th(f) >
sw(a∗)

Ea∼f(~ρ,c)[sw(a)]

>
n
2

1

b√m/2c+1

n
2 +

b√m/2c
b√m/2c+1

n√
m

> 1

b√m/2c+1
+ 1

b√m/2c+1

>
1

2

(⌊√
m

2

⌋
+ 1

)
.

On the other hand if τ > 1/ b
√
mc, construct the input profile ~ρ where ρi = ∅ for i ∈ N . In this case there exists

a∗ ∈ A where Pr[a∗] 6 1/m. Consider the utility matrix U where for every voter ui(a∗) = 1/ b
√
mc and for

a ∈ A\{a∗}, ui(a) = (1−1/ b
√
mc)/(m−1). We have sw(a∗) = n/ b

√
mc, and sw(a) = n(1−1/ b

√
mc)/(m−1)

for a ∈ A \ {a∗}. That gives us:

distτ -th(f) >
sw(a∗)

Ea∼f(~ρ,c)[sw(a)]

>

n

b√mc

1
m

n

b√mc + m−1
m

n

(
1− 1

b√mc

)
m−1

>
m

b
√
mc

>
⌊√

m
⌋
,

which gives us the desired bound.

E.5 Proof of Theorem 13
Theorem 13 (lower bound). For randomized threshold approval votes with the threshold sampled from any distribu-
tion D, every randomized rule f has distortion

distD-rth(f) >
1

2

⌈
log2(m)

log2(2 dlog2(m)e)

⌉
.

Proof. We are borrowing the construction directly from Theorem 3.6 in Benadè et al. [2021]. Consider the case where
ca = 1 for all a ∈ A, and let f be an arbitrary rule that both returns a threshold and a set of alternatives randomly.

Split up the (1/m, 1] interval into dlog2(m)/ log2(2 log2(m))e parts Ij defined such that

Ij =

(
(2 log2(m))j−1

m
,min

{
(2 log2(m))j

m
, 1

}]
.

Define uj and `j to be the largest and smallest points in Ij respectively. By construction, uj 6 2 log2(m)`j for all j.
The key idea is to give utilities to alternatives within the interval that the threshold with least probability is con-

tained in, so that with high probability, the alternatives are either all approved or all disapproved.
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Indeed, let k be a value such that

Pr(t ∈ Ik) 6 dlog2(m)/ log2(2 log2(m))e−1 ,

which must exist by the pigeonhole principle.
Fix a subset S ⊆ A of size dlog2(m)e, and let V = uk/2 + (dlog2(m)e − 1)`k.
We will give each voter the same utilities, so that u(a) := ui(a) = vi(a) for all i ∈ N, a ∈ A. For all a ∈ S,

assign utilities so that
∑
a∈S u(a) = V , for all a /∈ S, let u(a) = (1− V )/(m− dlog2(m)e).

We can verify that `k 6 1
2 log2(m)uk for all k. We can then see that the utilities sum to one, and are all positive as:

V =
uk
2

+ (dlog2(m)e − 1)`k 6
1

2
+
dlog2(m)e − 1

2 log2(m)
6 1.

We construct this so that all alternatives in S have utilities contained in Ik. Thus, when t /∈ Ik, all voters either
approve S or disapprove S. Therefore, there must exist some a∗ ∈ S such that

Pr(a∗is returned | t /∈ Ik) 6 1/ dlog2(m)e .

Now, we can assign u(a∗) = uk/2 and u(a) = `k for a ∈ S \ {a∗}. Then, the optimal choice is a∗ with social
welfare nuk/2, but instead, since `k > (1− V )/(m− log2(m)), we pick with high probability an alternative with at
most n`k utility.

Indeed, the expected social welfare of f is:

Pr(t ∈ Ik) · nuk
2

+ Pr(t /∈ Ik)

(
1

dlog2(m)e
· nuk

2
+
dlog2(m)e − 1

dlog2(m)e
· n`k

)
6

(
dlog2(m)/ log2(2 log2(m))e−1 +

1

dlog2(m)e
+
dlog2(m)e − 1

dlog2(m)e
· 1

log2(m)

)
nuk

2

6
(
dlog2(m)/ log2(2 log2(m))e−1

)
nuk.

The maximum social welfare that we can get is nuk/2, so the distortion is:

distD-rth(f) >
nuk
2

nuk

⌈
log2(m)

log2(2 log2(m))

⌉−1 =
1

2

⌈
log2(m)

log2(2 dlog2(m)e)

⌉
.

F Proofs for Single-winner rules

F.1 Proof of Proposition 4
Proposition 4. Every deterministic single-winner rule f has distortion at least 2 1−γmin

γmin
+ 1.

Proof. The key idea is that because we want to show distortion independent of m, we should be able to ignore all but
two alternatives. Consider the following input profile with two types of voters:

A : a1 � a2 � a3 � · · · � am
B : a2 � a1 � a3 � · · · � am

Then, suppose that n/2 voters are of type A and the rest of type B, each of whom has a PS-level of γmin.
Suppose a deterministic voting rule f picks an alternative ak with k /∈ {1, 2}. Then, we can make the utility all

voters have for a1 and a2 1, and the utility all voters have for a3, . . . , am zero. Because all utilities are the same, this
is consistent under PS-voting, and we have infinite distortion.

Without the loss of generality, suppose the voting rule picks a1 instead. Then, suppose all voters of type A have a
utility of γmin

2−γmin
for a1 and 0 for everything else, and all voters of type B have utility 1 for a2 and zero for everything

else. Then, sw(a1,U)
n = γmin

2(2−γmin)
and sw(a2,U)

n = 1
2 .
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This is consistent. Indeed, because every voter has zero utility for them, the PS value is zero, and so any ranking
involving them is consistent. Moreover, a1 � a2 for voters of type A as:

(1− γmin)
γmin

2− γmin
+ γmin

γmin

2(2− γmin)
=

2γmin − 2γ2min + γ2min

2(2− γmin)

=
γmin(2− γmin)

2(2− γmin)

= (1− γmin) · 0 + γmin ·
1

2
.

Voters of typeB have public spirited values of γ2
min

2(2−γmin)
for a1 and (1−γmin)+γmin

1
2 = 2−γmin

2 . Since (2−γmin)2 > γ2min
as 2− γmin > γmin > 0, we know that

(2− γmin)2

2(2− γmin)
>

γ2min

2(2− γmin)
,

and so the ranking is consistent for voters of type B as well.

Finally, we get that the distortion is at least:

sw(a2, U)

sw(a1, U)
=

2− γmin

γmin
= 2

1− γmin

γmin
+ 1.
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